Different characteristics of the corticospinal tract according to the cerebral origin: DTI study.
نویسندگان
چکیده
BACKGROUND AND PURPOSE Little is known about differences in corticospinal tract fibers according to cerebral origin. Using diffusion tensor tractography, we attempted to investigate the characteristics of the CST according to the cerebral origin in the human brain. MATERIALS AND METHODS Thirty-six healthy subjects were recruited for this study. A 1.5T Gyroscan Intera system was used for acquisition of DTI. CSTs were reconstructed by selection of fibers passing through seed and target ROIs: seed ROIs, the area of the CST at the pontomedullary junction; target ROIs, the primary motor cortex, the primary somatosensory cortex, the dorsal premotor cortex, and the supplementary motor area. RESULTS A significant difference in tract volume was observed in each ROI (P < .05): M1 (2373.6, 36.9%), S1 (2037.7, 31.7%), SMA (1588.0, 24.7%), and dPMC (429.8, 6.7%). Regarding fractional anisotropy values, the dPMC or SMA showed higher values than the M1 or S1; however, the opposite occurred in terms of the mean diffusivity value (P < .05). In addition, fractional anisotropy and mean diffusivity values of the dPMC differed from those of the SMA (P < .05); in contrast, no significant difference was observed between the M1 and S1 (P > .05). CONCLUSIONS Tract volume was found to differ according to cerebral origin and was, in descending order, M1, S1, SMA, and dPMC. In addition, the directionality and diffusivity of CST fibers in the SMA and the dPMC differed from those of the M1 and S1, which showed similar characteristics.
منابع مشابه
DiVusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke
DiVusion tensor imaging (DTI) fully characterises water molecule mobility in vivo, allowing an exploration of fibre tract integrity and orientation in the human brain. Using DTI this study demonstrates reduced fibre coherence (anisotropy) associated with cerebral infarction and in the corticospinal tract remote from the lesion, in five patients 2 to 6 months after ischaemic stroke. The study hi...
متن کاملDiffusion tensor imaging can detect and quantify corticospinal tract degeneration after stroke.
Diffusion tensor imaging (DTI) fully characterises water molecule mobility in vivo, allowing an exploration of fibre tract integrity and orientation in the human brain. Using DTI this study demonstrates reduced fibre coherence (anisotropy) associated with cerebral infarction and in the corticospinal tract remote from the lesion, in five patients 2 to 6 months after ischaemic stroke. The study h...
متن کاملDiffusion tensor imaging detects corticospinal tract involvement at multiple levels in amyotrophic lateral sclerosis.
BACKGROUND Histopathological studies of amyotrophic lateral sclerosis (ALS) are of end stage disease. Diffusion tensor imaging (DTI) provides the opportunity to investigate indirectly corticospinal tract pathology of ALS in vivo. METHODS DTI was used to study the water diffusion characteristics of the corticospinal tracts in 21 patients with ALS and 14 normal controls. The authors measured th...
متن کاملUsing diffusion tensor imaging to identify corticospinal tract projection patterns in children with unilateral spastic cerebral palsy
AIM To determine whether diffusion tensor imaging (DTI) can be an independent assessment for identifying the corticospinal tract (CST) projecting from the more-affected motor cortex in children with unilateral spastic cerebral palsy (CP). METHOD Twenty children with unilateral spastic CP participated in this study (16 males, four females; mean age 9y 2mo [standard deviation (SD) 3y 2mo], Manu...
متن کاملAdvanced fiber tracking in early acquired brain injury causing cerebral palsy.
BACKGROUND AND PURPOSE Diffusion-weighted MR imaging and fiber tractography can be used to investigate alterations in white matter tracts in patients with early acquired brain lesions and cerebral palsy. Most existing studies have used diffusion tensor tractography, which is limited in areas of complex fiber structures or pathologic processes. We explored a combined normalization and probabilis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- AJNR. American journal of neuroradiology
دوره 34 7 شماره
صفحات -
تاریخ انتشار 2013